#1l @QCREA

Singapore

\ Arts
et Métiers

généalogie, anatomie, physiologie et éthique

0 Francisco (Paco) CHINESTA
@ Francisco.Chinesta@ensam.eu

Jumeaux numériques :

Diagnostic
Prognosis &
Decision



mailto:Francisco.Chinesta@ensam.eu

THE TWO ENGINEERINGS

Performances in designs

Few Data for Model Calibration

Nominal
Physics-Based
Model

Nominal
Loading

Design based on
the predictions of
performances

Performances in operation

Real load
T %1

Prediction 7>t

World is changing. Today we do not
sell aircraft engines, but hours of
flight, we do not sell electric drills but
good quality holes, We are
nowadays more concerned by the
performance management than by
the products themselves ...

PREDICTING
FAST & WELL




INTRODUCTION: three levels of digitalization as proposed by Charbbel FARHAT
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As built or
as practiced
Digital replica



INTRODUCTION: Digital Twin instance — anatomy and function

Physical asset (or process)

ﬁ Useful data O

As builf or
as practiced
Digital replica

Based on:

o the best available multi-physics,
multiscale & probabilistic
computational models

o sensor information

To mirror & predict the functioning and
performances over the life cycle of the
associated physical asset.



INTRODUCTION: Digital Twin Types

d the digital twin prototype

designs, analyses and
processes used to realize
the physical product

&
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digital twin of each
individual instance of the
product once it is
manufactured

= » O O allows for a larger set of data to be

NES) &Y )| wmmm collected and processed for interrogation

- - about the physical product.
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THE LIMITS OF THE EXISTING PARADIGMS

Data

@ Physics
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The usual simulation-based paradigm fails to perform diagnosis, prognosis and decision
making when addressing complex systems of systems because of

. Physics-based: the lack of fidelity of state-of-the-art models, and the lack of
efficiency related to their solution procedures.
. Data-driven: the availability of data, its quality, as well as the limitations related to the

extrapolation or the ability to explain the predictions offered by the frained models.

The hybrid paradigm conciliates both paradigms, knowledge and data enrich mutually,
reducing the amount of data, driving their collection, enabling explaining and certifying
predictions and decisions, accounting for human and societal interests and constraints.




DIGITAL TWIN INSIGHTS

Virtual representation of real-world entities and processes, synchronized at a specific
frequency and fidelity throughout its lifecycle, and informs decisions that realize value
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DIGITAL TWIN INSIGHTS

Virtual representation of real-world entities and processes, synchronized at a specific
frequency and fidelity throughout its lifecycle, and informs decisions that realize value

Actionable Insights :

« Virtual Prototyping

« Testing & Validation

« Design Optimization

« Virtual Sensing (Monitoring)

« Predictive Model-Based
Control

« Predictive Maintenance




CONSTRAINTS

Respect physical
constraints

Embed domain
knowledge

o

Integrate sparse,
heterogeneous, noisy
& incomplete data

Bring interpretability
to results

Make predictions with
quantified uncertainties

Support
high-consequence
decisions




THE HYBRID PARADIGM

The hybrid paradigm conciliates both
paradigms, knowledge and data enrich
mutually, reducing the amount of data, driving
their collection, enabling explaining and
certifying predictions and decisions, accounting
for human and societal interests and constraints.

Reality = Knowledge + Ignorance
-

Physics-based Data-driven

—

Real-time physics

Real-time frugal ML



A SUCCESFULLY APPLIED HAI TECHNOLOGY FOR PREDICTING FAST & WELL

Physics—Based Model Physical asset

Data
collection

FEM

MACHINE
LEARNING
TECHNIQUES
Ignorance
MOR
model

dz
dt

- fphysics—based(x’ Z) + fdata—driven(x, Z)



PHYSICS BASED MODELS

A representation of the universal governing laws of nature complemented with
phenomenological behavior relationships

Linear & Nonlinear Elasticity Electromagnetism & Acoustics Fluid Dynamics

shutterstock.com - 2311455077

minutes, hours, ... hours, days, ... days, weeks, ...

 Expensive but accurate
 Cheaper by using Model Order Reduction



MODEL ORDER REDUCTION AND THE “ART OF SURROGATING”

Active Learning
* Goal-oriented GP

 Extended Fisher Information
 Tensor decompositions
 |nformation surrogates

Data Reduction
* Linear (PCA)

* Nonlinear:

* Manifold learning

 Autoencoders
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Modelling

N

Design of Experiments
& Simulations

P

Solutions
compression

.‘p

Interpolation
techniques

J

Parametric
Model

4

Model
Exploration

MOR/
Surrogate
dﬂ] hysics—based data—driven
E:fpy ($7Z)+f (w,Z)

Regression (informed)
* Regularized Lineal Polynomial

e Elastic Net, Ridge, Lasso, ...
* Nonlinear:

* NN-based

* Optimal transport
Postprocessing

* Data analytics

* Optimizers

* Uncertainty propagation

* |nversion / Data assimilation
e Control



REGULARIZED POLYNOMIAL REGRESSIONS

N iy, By, U Linear regression
i@ Linear approximation
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REGULARIZED POLYNOMIAL REGRESSIONS
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PHYSICS IN REAL TIME

Physics-aware interaction
between virtual and physical
objects in Mixed Reality

A. Badias, D. Gonzalez, |. Alfaro, F. Chinesta, E. Cueto

s Universidad
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PHYSICS IN REAL TIME




PHYSICS IN REAL TIME




ML/AI TECHNICAL POINTS

Ignorance
model
dx physics—based data—driven
ﬁzf (x,2) + f (2, 2)

Regularized polynomial regressions, GP, DT, RF, SVR, ...

rNN, LSTM, ResNET, NeuralODE, DeepONet, Reservoir computing, Koopman...

Transformers

Autoencoders

PINN, SPNN, PANN, ...




ML/AI TECHNICAL POINTS

Ignorance
model

9@? __tfphysics—Jbased( Z) 4_efdatar—driven( Z) E
dt " o :

1 | Encoder SPNN Decoder

N Do

:

ZG . ) .'t, ZSPNN
t o Latent reduced space W &t+l

Physically sound, self-learning

digital twins for sloshing fluids Fom LEJVER) T MYz, 2(0) =2

\; W with
) . Poisson matrix: Friction matrix:  L(z)-vS(z) =0,
B. Moya, I. Alfaro, D. Gonzalez, F. Chinesta, E. Cueto reversibility ireversibility  az(z) . VE(z) = 0.
Zn4+1 — Zn

At = L(zn+1a Zn)DE(z-n+1-, Zn) At M(zn-(-h zn)DS(Zn+17 zn)
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GENERIC

o = {L, M, DE, DS} = argmin ||Z< ) _ zmeasH
Jres

with DE=4Az
DS = Bz




RESEARCH TOPICS

| - MODEL ORDER REDUCTION: LEGO-LIKE & MULTI-TIME

I - RANK REDUCTION AUTOENCODERS / CONSTRAINTS IN THE LATENT SPACE

11l - LEARNING PARSIMONIOUS PARAMETRIC (DYNAMICAL) MODELS

IV - LEARNING HIERARCHICAL MULTI-TIME MODELS
V - GENERATIVE Al for GENERATIVE DESIGN

VI - GRAPHS NN: SHM, MULTI-PHYSICS, T-GCN & EVOLVING GCN, ...

VIl - INDUCTIVE BIASES

VIl - QUANTUM COMPUTING




QUANTUM COMPUTING FOR OPTIMIZATION ON A GRAPH

Quadratic Unconstrained
Binary Optimization (QUBO)

H=X'QX

&constraints

Singapore




TRANFORMER HYBRID TWIN INSTANCE

d_.fl? — fphysics—based(sz) e fdata—driven(sz)

dt
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SYSTEM MODEL ENRICHMENT — HYBRID MODELLING
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ON SMART CITIES

APPLICATION

control chain DATA PROCESSING

city service
Automate the management of
Enterprise m city and make it more efficient
Emergency Healthcare

portal

Digital Governmer®nvironment Digital supply § A1/MACHINE LEARNING FOR

CITY CLOUD CLOUD TECHNOLOGIES

Storage, analytics, economic
= scalability, access anywhere,
= anytime, high performance,

Cloud BI Database Data center reliability

BIG DATA

blockchain

CITY-WIDE COMMUNICATION
Both fixed and mobile; licensed

and unlicensed cellular
networks; low power
communications
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SENSOR

INTERNET OF THINGS

@ Capture movement,

environmental quality, force,
Sensor acceleration, flow, position, light
network

Communication encryption, authentication & key, role-based authorization,

@CREATE
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ON SMART CITIES

-

m RESPONSABILITY
i i

ETHICS

Smart cities and territories constitfute a complex system of systems, infimately entangled, contributing
to the security, pleasure and comfort of citizens, and operating in a secure, responsible, ethical and
transparent way.

@ @CREATE
Singapore




City Digital Twin AN A THALES
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FROM RESEARCH TO APPLICATION

INFORMED PEOPLE / SERVICES

ay CONTROL TOWER
HYBRID TWIN
SYSTEM OF SYSTEMS

HYBRID TWINS
COMPONENTS & SUBSYSTEMS
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HAI BUILDER

KNOWLEDGE

IMPLEMENTABLE ALGORITHMS & METODOLOGIES

DESCARTES WORKPAGES RESEARCH
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HYBRID TWINS
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FROM RESEARCH TO APPLICATION
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Augmented
Marina Bay Twin
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DEMONSTRATORS & USE CASES

Augmented Digital Energy Remote Sensing Drone Trajectory Emergency
Marina Bay Twin Planning crisis



ENVIRONMENTAL DIGITAL TWIN

- —

Augmented Digital Energy
Marina Bay Twin

Remote Sensing Drone Trajectory Emergency
Planning crisis
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WIND MAP

Sol_U Magnitude
00e+002 4 6 8 10 12 14 16 18 20 22 2.4e+0]

Interest of having
a wind map at the
city level

Inferring emissions dispersion SLA

SINGAPORE

Inferring air CIUCI“Ty LAND AUTHORITY 2

Inferring temperature and o, 0
thermo-convective flows §

Drone trajectory optimal o %
planning HTX

... and many others ... G./i

get it right

| .
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WIND MAP

-:4' " Dominant wind direction
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Available forecast is too coarse
for providing local (street level)
iInformation on the wind
velocity.
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boundary condifions for district- 5 ‘ A\
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That solution is computationally
too expensive
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WIND MAP

: : : Marina Bay Wind-map
Direction Intensity
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CONCLUSION

Hybrid Al overpasses usual physics-based
and data-driven paradigms

Physics-based allows better explaining
solutions and decisions

Physics-based models drive data collection

Physics-based models enable to reduce
drastically the amount of data

P @

Al enables to enhance
physics-based models' accuracy

Al
lall

physics-based models’ solutions
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